$4^{\text {rd }}$ COST E55 Workshop

University of Zagreb, Croatia, September 25-26, 2008
WG2 - Moisture induced stresses

Moisture induced stresses in dowel joints

A computational study

Stefania Fortino
 VTT - Technical Research Centre of Finland - Espoo - Finland

```
Research project:
Improved Moisture (WoodWisdom-Net)
```

3D moisture-stress analysis of a 2-dowel connection (wood: Norway spruce, $\mathrm{d}=12 \mathrm{~mm}$).

Background on the computational analysis

- 3D orthotropic viscoelastic-mechanosorptive model implemented in the Umat subroutine of the code Abaqus (Fortino, Mirianon and Toratti, 2008-http://www.vtt.fi/inf/pdf/publications/2008/P687.pdf).
- Moisture transfer modeled by the 3D Fick equation. Equations for moisture flow implemented in the Dflux subroutine of Abaqus. Temperature effect neglected.
- Coupled moisture-stress analysis performed by Abaqus/Standard. Validation of the computational model by comparisons with existing experimental data:
(1) small size wood specimens (Toratti and Svensson, 2002; Leivo, 1991)
(2) small glulam sections (Jönsson, 2005)
and by comparison with other 3D computational models (Ormarsson, 1999; Santaoja et al., 1991).

F=14 kN (just under the experimental elastic limit). Load applied for 1 minute. Constant MC=12\%.

- Top: 2D computational results (Sjödin, 2008). Center: experimental results by the ARAMIS-system (Sjödin, 2008). Bottom: 3D computational results (viscoelastic creep taken into account).

$\mathrm{F}=3.5 \mathrm{kN}(25 \%$ of the experimental elastic limit). Load applied for 1 month. Cases of drying and wetting.

Computational results: in both the drying and the wetting cases, the stresses perpendicular to grain exceed the characteristic values for glulam beams GL28c (Eurocode 5).

Relative humidity measured in the Sibelius hall, Finland, starting from July (Koponen, 2002). Computational results: the stresses perpendicular to grain exceed the characteristic values for glulam beams GL28c (Eurocode 5).

- The computational results have shown that, by using the proposed model, the stresses are strongly increased under natural indoor relative humidity conditions.
- The same type of analysis can be performed for outdoor conditions. The following figure shows the outdoor relative humidity measured during 1 year in Jyväskylä, Finland, starting from January (Koponen, 2002).

- Suggestions for accurate design codes:
- improvement of the existing constitutive models: more work for modeling 3D moisture transfer and for defining more general 3D mechanosorptive models (Frandsen and Svensson, 2007);
- validation of the models by comparisons with experimental results for real size timber connections;
- definition of general reference curves for natural indoor and outdoor relative humidity;
- definition of the moisture induced stress σ_{Q} for the design code on the basis of new information coming from the previous steps;
- ...?

