Snow storm damage in Denmark 22 February 2007

Jørgen Munch-Andersen, Danish Timber Information Council Jørgen Nielsen & Erik Steen Pedersen, Danish Building Research Institute

COST E55, Helsinki 13-14 March 2008

Incidents investigated

Building usage

- Arenas
- Factory buildings
- Farm buildings
- Shopping centre

Incidents investigated

Building usage

- Arenas
- Factory buildings
- Farm buildings
- Shopping centre
- Failed structural material
- Steel
- Glulam
- Timber
- Concrete
- Masonry

Examples of failure

Sports arena with low extension at west gable

Stable placed on west-side of a (later) barn

Arena with failed secondary beam

Characteristics of failed buildings

- Low building on west-side of a higher building or
- Large span buildings

Possible causes of failure

- Extreme snow load or drifting
- Inadequate code
- Structural flaws during design or construction
- Insufficient maintenance

Actual snow load

Characteristics of normal snow storm

- Wind always from east (Siberia)
- Cold air passing the sea picks up water
- Water temperature usually a few °C
- Air temperature -8 to -10 °C
- Snow density about 100 kg/m³

Characteristics of normal snow storm

- Wind always from east (Siberia)
- Cold air passing the sea picks up water
- Water temperature usually a few °C
- Air temperature -8 to -10 °C
- Snow density about 100 kg/m³

Warm snow storm

- Water temperature about 6 °C
- Air temperature just below 0 °C
- Snow density about 200 kg/m³
- Constant conditions for 3 days
- Happened last 1979 in SE

Snow load - summary

 Characteristic ground snow load in code, 0.9 kN/m², might have been slightly exceeded in some places

Snow load - summary

- Characteristic ground snow load in code, 0,9 kN/m², might have been slightly exceeded in some places
- Actual loads on roofs not measured
- Local snow depth on roof of 3 m or more reported

Snow load - summary

- Characteristic ground snow load in code, 0,9 kN/m², might have been slightly exceeded in some places
- Actual loads on roofs not measured
- Local snow depth on roof of 3 m or more reported
- Warm snow storm more likely due to climate change

Code loads

┙┥╕┝╴

History of code rules Duo-pitch roof

 c_1

30°

 C_3

1998 ~ ENV

 $s_{k} = 0.9 \text{ kN/m}^{3}$

fixed load

60°

С

1,6

1,1

0,8

0

0°

15°

Multi-span roofs with valleys

- Rules since 1945
- Peak load mostly about 1,5 kN/m²
- (EC: max 1,6 x 0,9 = 1,44 kN/m²)
- No damage observed

Cylindrical roofs

- Peak moved from edge to middle in EC
- DK recommends to use both

Drifting at obstacles

- First rules in 1988
- μ_2 and I_s defines load
- Various dependency on height and length of obstruction
- Max µ₂ =2 at all times
 I_s = 2 h
- Max $I_s = 15$ m at all times
- Min $I_s = 5$ m since 1998

- 2 contributions:
- Sliding from high roof to low ($\mu_{\rm s}$)
- Shelter effect when drifting (μ_w)

- 2 contributions:
- Sliding from high roof to low ($\mu_{\rm s}$)
- Shelter effect when drifting ($\mu_{\rm w}$)

Length:

- 2 contributions:
- Sliding from high roof to low ($\mu_{\rm s}$)
- Shelter effect when drifting ($\mu_{\rm w}$)

Length:

Sliding:

• Half of potential amount if $\alpha > 15^{\circ}$

$$=> \mu_{s} = \mu_{1} b_{1} / l_{s}$$

- 2 contributions:
- Sliding from high roof to low ($\mu_{\rm s}$)
- Shelter effect when drifting ($\mu_{\rm w}$)

Length:

Sliding:

• Half of potential amount if $\alpha > 15^{\circ}$

$$=> \mu_{s} = \mu_{1} b_{1} / l_{s}$$

Shelter effect:

• $\mu_{\rm w}$ = min[$\gamma_{\rm s}$ h / s_k; (b1+b2) / 2h; 4], $\gamma_{\rm s}$ = 2 kN/m³

Ridge height has no influence

h = 0 => no surcharge on either roof from drifting

- Ridge height has no influence
- h = 0 => no surcharge on either roof from drifting
- Reality: significant surcharge depending on ridge height

Code loads - summary

- Older codes inadequate for drifting
- EC seems unsafe for h = 0 (where roof slope decrease)
- EC seem unsafe for low buildings next to much higher buildings

Structural flaws and maintenance

Structural flaws

 Structural flaws are found in all buildings where the code were not obviously inadequate at the time of construction

Structural flaws

 Structural flaws are found in all buildings where the code were not obviously inadequate at the time of construction

Maintenance

 Insufficient maintenance only accounted for one failure, an old stable

- Older codes does not specifically take drifting into account – causes failures of low building at westward gable of high buildings
- Weaknesses of present codes not the only cause for any failure – always structural flaws as well
- EC not good for h = 0 and for large h

 Older codes does not specifically take drifting into account – causes failures of low building at westward gable of high buildings

- Older codes does not specifically take drifting into account – causes failures of low building at westward gable of high buildings
- Weaknesses of present codes not the only cause for any failure – always structural flaws as well

- Older codes does not specifically take drifting into account – causes failures of low building at westward gable of high buildings
- Weaknesses of present codes not the only cause for any failure – always structural flaws as well
- EC not good for h = 0 and for large h

- Older codes does not specifically take drifting into account – causes failures of low building at westward gable of high buildings
- Weaknesses of present codes not the only cause for any failure always structural flaws as well
- EC not good for h = 0 and for large h
- Recommendation for checking large span buildings

- Older codes does not specifically take drifting into account – causes failures of low building at westward gable of high buildings
- Weaknesses of present codes not the only cause for any failure – always structural flaws as well
- EC not good for h = 0 and for large h
- Recommendation for checking large span buildings
- If flaws observed possible actions are
 - Strengthening,
 - Evacuation plan or
 - Removal of snow

Recent storm damage to roof

Roof of steel plates

- 300 m² blew off
- Wind speed far from characteristic
- Other part of the roof blew off 3 years ago
- No strengthening considered!

Cause

• Battens fastened with smooth nails (square and rusty)

