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Abstract

In the past compression perpendicular to the grain is investigated and reported by
many as for instance by Kollmann [6] and Augustin and Schickhofer [2]. Several
attempts have been made to describe strength and deformation behaviour
empirically. It is well known that timber loaded in compression perpendicular to
the grain shows hardening, i.e. the initially linear stress-strain relation becomes
non-linear after a certain deformation level (the material loses stiffness).
Consequently, the local bearing strength increases strongly, associated with large
deformations (plastic behaviour). To explain this phenomenon a theoretical-based
model is presented while test results are used for validation. The theory however
has been presented several times by Van der Put, Stevin report HSC-6 [9] as early
as 1988 to explain the very high embedding strength of nailed particle board, and
by Van der Put and Leijten [11] and more recently by Van der Put [10], in which
test data are used for validation. It all confirms the theory to explain the
perpendicular to grain compressive (bearing) strength very well, as described in
Leijten and Schoenmakers [7] as well.

First this paper deals with the theoretical background and derivation of the model.
Besides, the behaviour of locally loaded timber blocks in compression
perpendicular to the grain is very similar to the bearing (embedment) behaviour of
dowel-type fasteners. Therefore the theory is applicable on connection failure as
well, see also Van der Put and Leijten [11] . This paper intends to contribute to the
credibility of this model, and to show the prediction ability of both bearing blocks
and bearing of dowel-type fasteners.



1 Introduction

The local compressive strength (bearing strength) perpendicular to the grain shows
hardening due to restrained dilatation perpendicular to the grain, associated with a
tri-axial stress state. This is explained and derived by Van der Put [10] with the
equilibrium method of plasticity (slip-line field theory). The solution is derived
using the method of characteristics. The high local strength appears to be
dependant of the ability to spread (distribute) the load.

The slip-line field theory has shown to give exact solutions for plane deformation
(strain) boundary value problems for rigid plastic solids. Besides equilibrium also
the boundary conditions should be satisfied while stresses do not exceed a strength
criterion. Sufficient plasticity should enable stress redistribution. The stress
distribution chosen is the same as the one that follows from the slip-line theory,
while another choice for the stress distribution is optional.

Below a timber block is loaded in compression perpendicular to the grain by two
bearing plates. The block is loaded by a stress os resulting in an opposite stress
under the lower bearing plate equal to Co.
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Figure 1: Compression test perpendicular to the grain, and assumed stress distribution

At failure the bearing strength, fs, is reached just beneath the upper bearing plate. It
appears that the bearing strength depends on the dimension of both plates. It is
explained and derived by Van der Put [10] that the strength is proportional with
the square root of the ratio between the loading area, dimensions s and t, and the
supporting area, L t, where t is the constant width of the bearing block:

/L t L
fo=Wf g St =1.08f \/; [N/mm?] (11)

The local bearing strength fs thus increases with a factor 1.08 V(L/s) compared to
the standard compressive strength perpendicular to the grain, fso. Apparently, the



ability to spread (distribute) the load and restrained dilatation in the material
result in higher local strength values. In this situation the material is in a state of
tri-axial compression.

The first application of the theory is given in 1988 (Van der Put, Stevin report HSC-
6 [9]) and dealt with the embedment strength of nailed particle board. The validity
of the theory was shown for timber as well. Comparison of Figures 1 and 2 shows
that the behaviour is rather similar.
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Figure 2: Dowel-type fastener loading the timber (embedment test)

Another interesting application is a dowel-type connection loading a timber beam
away from the supports. Figure 3 shows this loading case to be a superposition of
two simple cases. However, one needs to be aware that the model only predicts
bearing (embedment) failure of the timber. Splitting failure is a completely
different failure mechanism where fracture mechanical considerations result most
probably in the best prediction model.
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Figure 3: Dowel-type fastener loading a beam at mid span (right): superposition of stress
states

2 Derivation of the bearing strength

The equilibrium method is used to solve the problem. Therefore, a stress field is
constructed in the specimen that satisfies the equilibrium and the boundary
conditions, and nowhere the stresses should exceed the failure criterion. It consists
of a curvilinear mesh of two families of lines (stress trajectories) called the a-lines
and the B-lines, which always intersect at right angels, see figure 4. By definition,
the slip-lines are always parallel to the axis of principle shear stress. Since the shear
stress is equal to the shear yield stress, k, the material evidently deforms by shear



parallel to the slip-lines, and therefore these lines are called slip-lines. If the slip-
line field is constructed, the stresses can be calculated in every point using a set of
partial differential equations, for which the method of characteristics is a common
solution procedure. In certain cases the slip-lines are equal to the so-called
characteristics of the set of equations, and this solution is the only correct one.
Therefore, these particular slip-lines are called characteristics as well. The slip-line
tield theory is only applied to construct a stress field which is in accordance with
equilibrium. It thus is irrelevant whether the material actually fails along these
lines.

The next figure shows a small part of a slip-line field with the stress state for an
infinitely small material part with dimensions dx dy. As the slip-lines are always
parallel to the axis of principle shear stress, the normal stresses are always equal to
p, which is the hydrostatic stress. The directions of the a- and [3-lines are also given
as dy/dx = tan({+m/4) and dy/dx = tan(}-mt/4). These angles are the angles

corresponding to the (real) characteristics, as derived later.
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Figure 4: Detail of slip-line field
The equilibrium conditions are:
Jo
90, I and L (2.1)
ox dy dy  ox

A Tresca failure criterion is used, which applies after flow and hardening in the
weak directions (RT and RL directions) until a quasi-isotropic flow occurs followed
by further hardening and flow.



In Figure 5 the Tresca criterion is given in Mohr's circle with the general stress state
ox, Oy and Tx. The hydrostatic stress p is represented by the circle centre and thus
is equal to the average of both principle stresses o1 en o2:

p:(GHszz) (2.2)

The failure criterion can be described with equation (2.3):
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Figure 5: Circle of Mohr of the failure criterion

From this figure it can be noticed that the direction of the maximum shear stress
differs /4 from the principle directions, which corresponds with the directions of
the slip-lines depicted in Figure 4. With the use of trigonometric relations the
stresses 0x, Oy and T~y can be determined:

6, =p—kcos2y (24
6, =p+kcos2y (2.5
T=ksin 2y (2.6)

The hydrostatic stress p can also be described using Cartesian stress components as
follows:



p=0, +kcos2y =0, —kcos 2y (2.7)

Substitution of the expressions for ox, oy and T« in the equilibrium equations

gives:

a—p—21<sin(21|1)a—\lj+2kcos(2\|1)a—W:O (2.8)
ox ox ay

a—p+2kcos(2\|1)a—w+2ksin(2\|1)a—w:O (29)
dy ox dy

If equation (2.8) is multiplied with sin(\ - t/4) and equation (2.9) with cos({} + t/4),
addition of both equations is possible, which leads to the following relations (see
also Schwarz [8] or Van der Put [10]) :

dp-2ky) ) olp-2k ) da 7 da
- _—_— = —_ —_|—= 21
~ +tan(\|! 4) oy 0 = ax+tan[l|l 4)ay 0 (2.10)

a(p+2kW)+tan(\u+£jM=0 - a_b+tan(\|j+£)a—b:0 (2.11)

In order to obtain simplicity, two new variables, a and b, are defined,
corresponding to a and {3, belonging to both families of slip-lines. In equation
(2.10), a=p -2 k{ (a -slip line). It follows that along the characteristic with slope
-dy/dx = tan ({ - 7/4), “a” is a constant. In equation (2.11), b=p + 2 ki (p -slip line),
and similarly, constant along the characteristic with slope -dy/dx = tan ({ + 7/4).
Because dy/dx denote the directions, the negative sign “-“ has no actual value,
because it mirrors the specific angles with the horizontal axis.

Formally, it has to be proved that the slip-lines found are the true characteristics,
and to do so, equations (2.8) and (2.9) are combined with their corresponding
equations of variation (see Van der Put [10]):

1 0 -2ksin2y 2kcos2vy) | gx 0
0 1 2kcos2y 2ksin2vy ||%P 0
dy . . oy | _Jdp (2.12)
dx ) v & '
y ox av
0 0 1 —
dx A dy




On the characteristics the derivatives have no determinate value and therefore all
numerator and denominator determinants have to be zero in the characteristic
directions. Accordingly, these directions can be found.

This is achieved using the method of characteristics solution procedure. A zero
value of the numerator determinant gives, after subtracting the third row from the
tirst (the first column and third row consist only of zeros and can be removed):

—? —2ksin2y 2kcos2vy

X

det| 1 2kcos2y 2ksin2vy |=0 (2.13)
0 1 dy

dx

Evaluation of this determinant gives:

X

2
—(d—yj coszw+2(ﬂjsin2w+cos2w=o (2.14)
d dx

Solving dy/dx results in the slopes of both orthogonal sets of characteristics:

d_y = tan(\y + Ej (a-lines) and ﬂ = tan(\y —Ej (B-lines) (2.15)
dx 4 dx 4

In this special case (symmetry) it follows that -dy/dx = tan ({ - t/4) is equal to
dy/dx = tan ({ + m/4), corresponding to the a-family, as will be shown later.
Similarly, -dy/dx = tan ({ + 1t/4) is equal to dy/dx = tan (¢ - 7/4) for the 3-family.

A zero value of the denominator determinant gives:

_Y oksinoy -9P
dx dx

det| 1 2kcos2 vy 0 |=0 (2.16)
0 1 dy
dx

Evaluation of this determinant gives:

d
—ﬂ(d_“’coszw}rd_‘”sinzw—i—p:o (2.17)
dx \ dx dx 2k dx



If equations (2.15) are substituted in equation (2.17), one obtains that p + 2 k {
should be constant along the first respectively the second characteristic (the
Hencky-relations, see Chakrabarty [3]):

p—2k y = constant along the a-lines (2.18)
p+2ky = constant along the 3-lines (2.19)

From the slopes of these lines it is concluded they are always perpendicular to each
other as they should be. This relation was used before in order to derive equations
(2.10) en (2.11). The constant value of p + 2 k { and the right angle between the
lines proves that they are indeed characteristics.

In Figure 7 a small and simplified part of the entire mesh of slip-lines is depicted.
Triangle AA*B is a region of constant stress state because a uniform compression
load acts on the plane AA*. The maximum shear lines are therefore everywhere at
+ 45° (1/4 radians) to the principle directions, and have to be straight. The
directions of the characteristics were determined as dy/dx = tan(y + 7/4), which
shows that { = /2 in this region, due to symmetry. In this case also the pole of
Mohr’s circle is located at point (o2, ™=0), which leads to { = /2 as well. This
direction of the plane with the principle stress is also the direction of the highest
principle compression stress. This means that the Cartesian coordinate system
makes right angles with the principle directions of stress e:1 and e2. In order to
maintain an x-axis which is horizontal, the coordinate systems are rotated, as
depicted in Figure 6.

Y_r/2

Figure 6: Rotation of principle axes and Cartesian axes to maintain horizontal x-axis
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Figure 7: Sample of slip line field and detailed nodal information (crossings of slip-lines)

The mesh of slip-lines can now be computed, from point to point along a slip line
as depicted in Figure 7. As this procedure can be quite time consuming, generally,
this should be done numerically. As a starting point a point known from the
boundary conditions should be taken. If one point is known, the next point can be
calculated because of the geometric relations within the slip-line field. The real
location of the intersection points is of minor interest, because these depend on the
assumed angles ¢ with the principle shear axes. The stress state, however, is of
interest. By definition, the maximum shear stress k is acting on each element but
the hydrostatic stress p differs from point to point, as a result of changes in the
element orientation.

In Figure 7 the curved slip-lines are represented by linear lines which approximate
the curved ones, for simplification. Going from point B to point C* along the p-slip
line (“+“-sign) with the use of the Hencky-equations given previously (angle
measured counter clockwise):

T T
pB+2kE=pC*+2k(E+¢j = pe=ps-2ko (2.20)

£” 7

Similarly, from point C* to point D, along the a-line (“-”-symbol):

L T
pc*—Zk(E+¢j:pD—2k§: = pp=pe -2k (2.21)



Substitution of pcr found in equation (2.20) in equation (2.21) yields:
Po=pc: ~2k0=p; -2k¢-2ko = pp=p; -4k (222)

As a result of the constant compression state in triangle AA*B, the hydrostatic
stress ps must equal the compression load acting on plane AA¥*, thus ps = ps. By
definition, the angle O describes the angle between the first and last slip-line. As
can be seen from Figure 7, 0 =n ¢, dependent of the number of ¢p-angles one wants
to calculate. In general, the hydrostatic stress at the lower bearing plate po can thus
be given in relation with the bearing stress at the upper plate:

P, =ps —4kn¢=p,-4k6 = p,=p,+4ko (2.23)

In Schwarz [8] the slip-lines are constructed numerically, and from this it follows
that the angle O follows from the logarithmic spiral shape of the characteristic,
which can be approximated by the function:

0~0.621n(2h/s) (2.24)

Substitution of O in equation (2.23) yields:

p, =p, +4k(0.62In(2h/s)) (2.25)

With Mohr’s circle it follows that the principle compression stress o1 for the upper
and lower bearing plates can be described as being the hydrostatic stress minus
one time the shear strength k, so pi = o1 - k. It thus follows with equation (2.25):

o, -k=0,-k+4k(0.62In(2h/s)) = o, =0, +248kIn(2h/s) (2.26)

In Figure 1 a compression test is depicted with the corresponding slip-line field,
which thus determines the direction of the main stresses. Equilibrium of resultant
forces yields:

c.s
6.s=6,L = o ,=— (2.27)

It now follows from equation (2.27):

6,-0,=248kIn(2h/s) = GS—GES:65(1—%):2.48k1n(2h/s) (2.28)
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Elastic spreading of the loads will occur at an angle of about 45°, thus for first
plastic flow, it follows from the geometry of Figure 1:

L=~2h+s or hz(L;s) (2.29)

Substitution of h (equation (2.29)) in equation (2.28) yields:

05(1—3 =248k h{z (;_S)] = 65(1—%) =248k 1n(£—1) (2.30)

S S

Rearranging of equation (2.30) results in equation (2.31):

248 k ln(L _ 1) 248 k 111(L _ 1) 248 k 111(L _ 1)
S S S

G (&1

-2)
L
It can be shown with general mathematics (power law approximation of a
function) that this function for o is nearly proportional with V(L/s), with 2.48k

being a constant. Therefore this equation can be rewritten defining a new variable
C (which appears to represent a constant and shown below), which equals:

C:In(E—lj JL/s (2.32)

S L/s—-1

=

(2.31)

With equations (2.31) and (2.32) one obtains equation (2.33), which can be regarded
as a general form for a function being proportional with V(L/s): A=constant x V(L/s):

6. =248k 1n(£—1jL—/s =248k C+/L/s (2.33)
S (L/s)—-1

The fact that the function C is indeed a constant in the region of interest can be
noticed from figure 8, where a chart is plotted for C as function of x=(L/s)-1. The
function C x V(L/s) is given as well to show that the varying part of equation (2.31)
is indeed proportional to V(L/s) and therefore can be approximated by C V(L/s).
From figure 8 it follows that C = 0.78.

11
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Figure 8: Function C and its approximation
The value of k, the maximum shear stress, follows from the compression test (cubic

specimen), with o1 = fce0 and 02 = 0, or with Mohr’s circle: k = fco0/2. With the nearly
constant value C = 0.78 one obtains:

f,
G, =248k CL/s=248- C'29° -0.78 /L /5 =097 f_g\[L/s =puf gL/s (234)

The theoretical derivation shows that p = 0.97, what is approximately 1.0. In
equation (1.1) this coefficient p = 1.08, which is calculated from tests by for instance
Suenson (see Kollmann [6]). Adapting the value 1.0 thus provides a lower bound
approach, because apparently the real slip-lines give a higher value, and therefore
gives the possibility to adapt the model to test results and to derive design rules.

3 Bearing strength of locally loaded blocks

In Van der Put [10] compression tests are analyzed from which the angle of
spreading is calculated, for instance from the tests reported by Suenson (see
Kollmann [6]). From these tests it follows that the maximum spreading angle is
nearly 1:1.5 (=34"). In these tests the wultimate compressive strains are
approximately 15%, which is very high. The increased spreading length is
probably caused by friction between timber and bearing plates, which is a result of
the very high local compression stresses, and thus plasticity. Until plastic flow
occurs in the specimen, the angle appears to be about 1:1 (=45°). The angle thus
strongly depends on the deformation (elastic or strong plasticity).

12
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Figure 9: The angle of spreading for a) small and b) large deformations (From: Leijten and
Schoenmakers [7])

As shown in Leijten and Schoenmakers [7] the failure load predictions by the
model of Van der Put are much better than the empirical based Eurocode 5 [4]. In
Figure 10 a chart is depicted where the model and the Eurocode 5 [4] are compared
with test data by Suenson, Graf, Korin, Riberholt, and Augustin and Schikhofer. In
contrast to Van der Put [10] the spreading is consistently 1:1.5, and it is
demonstrated the model is of great value. In most cases p was set to be p = 1.0, but
in some cases p = 1.1 (= 1.08) provides better results in comparison with tests. The
maximum compressive strength was evaluated from cubic test specimens reported
by Suenson, and was taken as the reference strength for both models.

Bearing (compressive) strength perpendicular:
Model comparison

14
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Figure 10: Evaluation of compression test data: Model comparison (From: Leijten and
Schoenmakers [7])
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4 Bearing strength of dowel-type joints

As mentioned previously, the model is valid for connections with dowel-type
fasteners as well, but only if the embedment strength of the timber is governing
failure. Splitting failure is a completely different failure mechanism where
conventional stress analyses probably aren’t able to describe and explain the
phenomenon sufficiently accurate.

As can be noticed from Figure 2, the fastener can be regarded as the upper bearing
plate and in that respect the compression test and the embedding test are related.
Recall equation (1.1), with u=1.0:

Lt Lt A
fs = “’ fc;90 = fC;90 = fs = fc;90 fower (11)
st st A pper

In principle, the square root ratio denotes the ratio between the supporting area, L
t, and the loading area, s t. In this equation the timber is a prism with a uniform
width, t, and therefore t vanishes from the equation.

In the case of dowel type fasteners, distinction can be made concerning the
penetration length. Usually, dowels and bolts penetrate the entire cross-section,
and therefore distribute the bearing stresses beneath the fasteners uniform over the
timber width. Nails, however, generally don’t penetrate the full cross sectional
width, and therefore the bearing stresses don’t develop over the full width. The
same counts for a very slender bolt that plastically deforms at ultimate bearing. In
this case the highest bearing stresses occur near the shear planes in contrast to the
middle part. In Figure 12 these situations are depicted.

Figure 12: Different bearing lengths for different fastener behaviour / type:
A) Rigid, remains straight, B) Nail, limited penetration, C) Slender, bending

14



Generally, the difference between these situations is the length over which bearing
stresses develop. Let this load-bearing length be denoted as 2Ad, and with equation
(1.1), one obtains (with s = d, being the length of the upper “bearing plate”)
equation (4.1), see Figure 12 as well.

A / Lt
fs = fc;90 % = fc;9o d20d (4.1)
upper

According to the European Yield Model, proposed in 1949 by Johansen [5], the
failure load of a rigid dowel in double shear can be estimated with (Johansen I):

RﬂMzzgdé —~ 2f dAd = (t=2Ad) (42)

In this equation Fuevwm is the total failure load (2 times the wF
load per shear plane), with fn the embedding strength, d “”’Im

the fastener diameter, t/2 the effective timber width
because a dowel can only transfer embedding stresses
over half the timber width, and 2Ad the effective length
(or bearing length) of the fastener. This bearing length in
this situation is equal to the timber width t, see Figure 13

1

Lk

as well.

nF
Figure 13: Johansen I

Usually, the embedment strength is defined empirically in a way that the EYM
provides sufficiently accurate results. But it is well known that the embedding
strength of timber perpendicular to the grain shows hardening and as so, joints
designed according to the EYM are always over-designed. The embedding
strength, or better called bearing strength, described in this paper (as well as in the
papers by Van der Put and Leijten [11]) is denoted as fs, according to equation (4.1)
for connections.

Substitution of equation (4.1) in equation (4.2) yields (replacement of the wrong
embedment strength by the correct bearing strength):

Lt
Fzzg%/dzkddxd (4.3)
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If n fasteners are used next to each other, the failure load of equation (4.2) should

become, where it is assumed that all fasteners contribute to load transfer equally
(n=nef):

nﬂMznzgd% —~ n2f dAd (44)

In Figure 14 a connection with 2 rigid dowels is depicted, from which it can be
noticed that the spreading length per fastener is L/n, and thus yields:

Lt
nd 2Ad

F=2nf.,, d Ad (4.5)

Figure 14: 2 rigid dowels next to each other, spacing e

Rewriting of this equation results in equation (4.6):

2°n* Ltd* A’ d?
F:fc%\/ &

F—f. [/onLtdAd 46
nd2nd - co0 V1 (46)

In the case of rigid dowels, that is, if 2Ad =t, the strength can be given by equation
4.7):

F=f, hnLtd%:tg%JnLd (47)

In the case of non-rigid or short fasteners, 2Ad <t, one obtains:

F=f, 2nLtdAd = F=d /nLt,2Af, = d JnLtf,, (4.8)

16



The factor f*co thus is equal to fes V2A, and if A is set to be at least t/2d (as depicted
before), one obtains:

0 =2 A f ,/ 2d f (4.9)

what can be considered as a rule, by definition.

The only parameter not discussed is the spreading length L. As mentioned in the
previous chapter and confirmed by tests, the angle of spreading is 1:1.5, so with
Figure 2, it yields that L = 3 he. If two fasteners next to each other are considered,
this length must be increased by the spacing, L = 3 h. + e. Note that the fastener
diameter is neglected in this respect, because the deviation is minor. The strength
equations in all possible combinations (one or n fasteners, rigid or slender full-
penetration fasteners, nails) are determined now.

Model validation

The accuracy of the model is evaluated by analyzing embedding tests
perpendicular to the grain reported in Whale and Smith [12] (CEC). Tests have
been conducted on European Whitewood, European Redwood and Canadian
Spruce Pine Fir using nails with varying diameter {2.65, 3.35, 4.00, 5.00, 6.00 [mm]}
and bolts {8.0, 12.0, 16.0, 20.0 [mm]}. The specimen dimensions are related to the
fastener diameter as indicated in Figure 15.

These tests however are not in accordance with EN 383 [1] (1993) as the embedding
strength was defined as the stress level associated with 2.1 mm displacement.
However, stiffness parameters describing the load-slip behaviour are reported as
well and with a generalized 3-parameter exponential function the behaviour is
expressed mathematically. Evaluation of all tests with this expression indicates that
plasticity did occur and the model presented here can be applied, as depicted in
Figure 16.

Nails Bolts

- 5 | } a 5d 15d
d
e

“ 20d 20d

N NN\ 30d 18d

e T f 5d 4d
d e d

Thickness 2d 2d

Compression perpendicutar
to grain

Figure 15: Embedding tests conducted by Whale and Smith [12]
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Load- slip characteristics according to formula Smith and Whale
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Figure 16: Load-slip behaviour according to formula of Whale and Smith [12]

Recall equation (4.5) which in the case of rigid fasteners (t=2Ad) is equal to
equation (4.7), with F being the embedding strength on from tests on one fastener
(n=1) multiplied with “t d”, being the area of the “upper bearing plate”:

L
F=2nf.,, /mdkdztfqgw/nldd = oytd=tf, JLd (4.10)

With the specimen dimensions of figure 15 it follows:

Nails: 6, ,td=tf o 3fd=tfy 3(5d)d = o, =fq15 (4.11)

Bolts: 6, ,td=tf o 3fd=tfy 3(4d)d = o, =f 412 (4.12)

The factor fcoo can be regarded as the equivalent compressive strength just beneath
a circular fastener, because this is the value for L/d = 1 (no spreading) in equation
(4.10). Although fc9 is dependant of the fastener diameter this is not expressed in
equations (4.11) and (4.12) what can be explained by the chosen specimen
dimensions. This strength parameter thus can be regarded as the reference strength
(prismatic specimen with dimensions d t f), and is regarded independent of the
timber density o being approximately the same for these timber species (Qmean = 404
kg/m3, C.O.V. 6%). Because the actual value of fce is not known, it can be derived
from experiments according to equations (4.11) and (4.12), which leads to an
apparent value. In figure 17 a graphical representation of the embedding tests

18



(Whale and Smith [12]) is given (average values). The presented power fit agrees
very well with the test data (R?> = 0.94), and can be approximated with equation
(4.13) for both nails and bolts:

14
- (4.13)

Equivalent compressive strength, based on average values embedding tests
(European Whitewood (EW), European Redwood (ER), Canadian Spruce Pine Fir (CS))
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Figure 17: Equivalent compressive strength as function of fastener diameter

For comparison the embedding strengths for bolts and nails according to Eurocode
5 [4], equations (4.14) and (4.15), and the actual embedding strength from tests
calculated as fn =F/dt is shown in figure 18. The characteristic density is taken as o«
=380 kg/m?.

Nails: £ =0,082d°% p, (4.14)

- 0,082(1-0,01d)p, N - 0,082(1-0,01d)p,

Bolts: f L=
o ah oh T 135400154

4.15
kg, sin® o + cos® a ( )

In these equations d is the fastener diameter, px the characteristic timber density, o
is the angle with the grain and the factor ko depends on the timber density. For the
species considered (px < 500 kg/m3) koo = 1.35 + 0.015 d. In figure 18 the embedding
strengths for both nails and bolts are approximated with one single power fit (thus
not in accordance with Eurocode 5 [4]).
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Embedding strength, based on average values embedding tests
(European Whitewood (EW), European Redwood (ER), Canadian Spruce Pine Fir (CS))
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Figure 18: Embedding strength as function of fastener diameter

From the figure it is concluded that the embedding strength according to Eurocode
5 [4] doesn’t describe the experiments well. For ox = 380 kg/m® the embedding
strength of bolts is overestimated while for nails this strength is estimated too low.
The prediction ability doesn’t increase significantly if nails and bolts are treated
separately. The power fit of the experiments shows that embedding data can be
described accurately with only one equation for both nails and bolts.

The trends described by the power fit of foo (Figure 17) and fno (Figure 18) are
rather similar. Therefore it is concluded that the model presented here is able to
describe the tests accurately. From these figures it follows that the bearing strength

of dowel type fasteners perpendicular to the grain is strongly dependant on the
dowel diameter.

Conclusions

A theoretical model is derived and presented, based on the equilibrium method,
which explains test results of compression tests perpendicular to the grain of
timber blocks and embedding tests with dowel type fasteners. Concerning bearing
blocks it is concluded that the prediction according to this model agrees better with
test results than the current Eurocode 5 [4]. Concerning embedding tests with
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dowel-type fasteners it is concluded that the strength can be described accurately

with the model, while the current Eurocode 5 [4] doesn’t. Besides, only one
equation is needed for tests on both nails and bolts instead of two according to
Eurocode 5 [4]. Because the embedding strength calculated as F/dt from tests is
much higher for small diameter fasteners, such joints in practice will always be

over designed considerably.
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