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Failure due to stresses perpendicular to the grain 

Compression (e.g. supports) 

Embedding (dowel-type joints)

Locally loaded block Dowel-type joints
*: Left: Sawata and Yasumura (2002)

**: Right: Vreeswijk (2003)
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General aspects / behaviour 

Similar behaviour compression test and embedding test (both ┴ grain)
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General aspects / behaviour 

Similar behaviour compression test and embedding test (both ┴ grain)
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Derivation of the bearing strength: general 

Theoretical / physical model (according to Van der Put (1988), (2000))

Stress field according to slip-line field theory

Equilibrium

Boundary conditions

Failure / Strength criterion (Tresca)

___ Slip-lines (max Shear)

- - - Principle directions
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Derivation of the bearing strength: general 

Theoretical / physical model (according to Van der Put (1988), (2000))

Stress field according to slip-line field theory

Equilibrium

Boundary conditions

Failure / Strength criterion (Tresca)
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Derivation of the bearing strength: general 

Theoretical / physical model (according to Van der Put (1988), (2000))

Stress field according to slip-line field theory

Equilibrium

Boundary conditions

Failure / Strength criterion (Tresca)
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Derivation of the bearing strength: general 

Theoretical / physical model

Stress field according to slip-line field theory

Equilibrium

Boundary conditions

Failure / Strength criterion (Tresca)

Little plasticity needed (hardening behaviour) stress redistribution

Compression perpendicular to grain
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Derivation of the bearing strength: general 

Stress field according to slip-line field theory

1) In “wedge region” due to symmetry:

2) Along α- and β-lines:
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Derivation of the bearing strength: general 

Stress field according to slip-line field theory

Hencky-equations
ψ− k2p{ Constant along α-lines

Constant along β-linesψ+ k2p
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Derivation of the bearing strength: general 

Stress field according to slip-line field theory

Hencky-equations
ψ− k2p{ Constant along α-lines

Constant along β-linesψ+ k2p
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Derivation of the bearing strength: general 

Stress field according to slip-line field theory

Hencky-equations
ψ− k2p{ Constant along α-lines

Constant along β-linesψ+ k2p
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Derivation of the bearing strength: general 

Stress field according to slip-line field theory

Generally:

α−linesβ−lines 
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Derivation of the bearing strength: general 

Stress field according to slip-line field theory

Generally:

Angle θ can be approximated*:
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Derivation of the bearing strength: general 

Stress field according to slip-line field theory

Generally:

Angle θ can be approximated:

Equilibrium, and rearranging:
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Derivation of the bearing strength: general 

Stress field according to slip-line field theory

Elastic spreading (a first flow / plasticity) at 45˚ (if h>s):

, and thus:

Substitution, and rearranging Solution:
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Derivation of the bearing strength: general 

Stress field according to slip-line field theory

Define a “constant” C (proportional with √(L/s)):
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Derivation of the bearing strength: general 

Stress field according to slip-line field theory

Define a “constant” C (proportional with √(L/s)):

Recall Mohr’s circle (Pole being at σ2=0 (ψ = π/4 )):
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Bearing strength of locally loaded blocks

Angle of stress distribution ≈ 34˚ ( 1:1.5), or ≈ 45˚ ( 1:1)

(from bearing tests, and FEM)

Evaluation of tests of different sources (see CIB-W18 / 40-6-1) 

***

* **

**: Augustin and Schikhofer (2006)

***: Graf (From: Kollmann (1955))

*: Suensson (From: Kollmann (1955))

Bearing tests by Suensson Bearing tests by Graf



23

Bearing strength of locally loaded blocks

Angle of stress distribution ≈ 34˚ ( 1:1.5), or ≈ 45˚ ( 1:1)

(from bearing tests, and FEM)

Comparison with prediction ability Eurocode 5: 2004
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Bearing strength of dowel-type fasteners

Angle of stress distribution ≈ 34˚ ( 1:1.5) (from bearing tests, and FEM)

Evaluation of embedding tests by Whale and Smith (CEC) (1986) 

Nails and Bolts, Eur. Whitewood, -Redwood, Canadian Spruce 

Load-slip derived from stiffness parameters (sufficient plasticity)
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*
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Bearing strength of dowel-type fasteners

Embedding strength, being F/dt [Failure load/ (diameter x thickness)]

Embedding strength according to Eurocode 5: 2004

Nails and bolts approximated with one line (power fit)

Test data:
y = 58.997x-0.5948

R2 = 0.9475
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R2 = 0.9016
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Bearing strength of dowel-type fasteners

Equivalent compression strength fc;90 derived from tests

Nails and bolts approximated with one line (power fit)

Strongly diameter dependant (size effect)
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Bearing strength of dowel-type fasteners

ESPI-measurement (simply supported beam, loaded at mid span)

Displacement σy Strain εy
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Conclusions / remarks

Theoretical model to explain the bearing strength of locally loaded blocks
and dowel-type fastener joints (according to Van der Put (1988), (2000))

Prediction ability is better than other existing models

Further research shall lead to new results and knowledge
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End of this presentation


