Modelling of the

COST Action E55

Performance of Timber Structures

04-05 October 2007 in Eindhoven, The Netherlands

Reliability of timber trusses under eccentric loads

Luís Neves & Jorge Branco

New University of Lisbon (Portugal) University of Minho (Portugal)

luis.neves@fct.unl.pt * jbranco@civil.uminho.pt

Timber construction was, for decades, executed without any formal design

- Simple plane structures
- Subject mostly to axial forces

However, a loss of know-how lead to badly built structures with errors that can affect safety

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

TRUSS TYPOLOGIES

SURVEY

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

GEOMETRY

Free span close to 6m

Distance between trusses 3.5-4 m

Roof with 25-30^o slope, covered with ceramic tiles

Wood elements of Maritime Pine, Chesnut and Eucaliptus

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

Loads applied at nodes

Stirrup strap working only in tension

- Rafters in compression and bending
- Tie-beam in tension

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

Common errors

SURVEY

Increase in bending moments in main rafters

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

Common errors

SURVEY

Increase in moments in tie-beam

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

Common errors

SURVEY

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

Reliability of timber trusses under eccentric loadsCOST Action E 55 – Modelling of the performance of Timber Structures

In a deterministic framework, it is difficult to measure the effect of these errors on safety

A probabilistic analysis allows the comparison of probability of failure and reduction of safety in a consistent manner

Moreover, it is possible to analyze the safety of the structural system, rather than element by element

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

			Typical Portuguese
Actions	Permanent Loads	Normal	lipologies
	Snow	Gamma	H = 1000m Portugal

Materials	Bending MOE Bending strenght Tension paralell to grain Compression paralell to grain	Lognormal Lognormal Lognormal Lognormal	Maritime Pine		Correlated
-----------	--	--	---------------	--	------------

Based on JCSS model code, Portuguese specifications, and EC

Reliability of timber trusses under eccentric loads

COST Action E 55 – Modelling of the performance of Timber Structures

Maritime Pine classified according to Portuguese Code $f_{m,k} = 18$ MPa

Dimensions

Principal Rafter	22×7 cm
Tie Beam	12×7 cm
Strut and King Post	7×7 cm

Over-designed Tie Beam

DimensionsPrincipal Rafter22×7 cmTie Beam7×7 cmStrut and King Post7×7 cm

Reliability of timber trusses under eccentric loads

COST Action E 55 – Modelling of the performance of Timber Structures

PURLINS ECCENTRICITY

Reliability of timber trusses under eccentric loads

COST Action E 55 – Modelling of the performance of Timber Structures

PURLINS ECCENTRICITY

- Increase in probability of failure of tie-beam
- Increase in stresses in rafter
- Increase in p_f not so much associated with failure of tie-beam in particular for higher eccentricities

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

Compression connection and strong tie-beam

- Small changes in probability of failure, compared to correct connection
- Tie-beam is so over designed that increase in bending moments in not significant

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

Compression connection and weak tie-beam

- Increase in probability of failure of tie-beam, decreasing with eccentricities
- Increase in stresses in rafter
- Increase in p_f not so much associated with failure of tie-beam in particular for higher eccentricities

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

Excentricity = 20 cm

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

IDEALLY: King post trusses as plane structure, with the loads applied in the joints, only presents normal stresses.

IN PRACTICE: significant variability in the joints geometry and connections techniques (stiffness). Purlins eccentricity. Misconceived connections king post / tie-beam. Patologies in rafter / tie-beam connections. Unsafe supports.

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures

Analyzed

- Purlin eccentricity
- Rafter / tie-beam connections

For the analyzed example

- Eccentricities results in significant reduction in safety
- Defective king-post/tie-beam connections do not lead to such a significant reduction in safety due to traditionally over-designed tie-beams

Reliability of timber trusses under eccentric loads COST Action E 55 – Modelling of the performance of Timber Structures