2° Workshop COST E55 "Modelling of performance of Timber Structures" 4-5 October 2007 – Eindhoven, The Netherlands

The application of FT-IR spectroscopy to monitor biodegradation of wood during decay tests

Short Term Scientific Mission - Italy/The Netherlands

Nadine Edi Montaruli, J.W.G. van de Kuilen, W. Gard

Delft University of Technology (The Netherlands) Faculty of Civil Engineering and Geosciences Timber Structures and Wood Technology

> Elena Conti CATAS Spa Testing Laboratory (Italy)

Contents

Timber decay in the Reliability model
Strength loss prediction due to decay
Short Term Scientific Mission in Italy
FT-NIR analysis at TUDelft
Conclusions and future work

Service life of timber structures depends on many parameters.

Probabilistic models have been developed to describe time dependent changes in residual strength of a structure taking into account the **mechanical loads**.

Environment affects buildings, so it is necessary to consider also the degradation of structures caused by **physical** and **biological** factors.

Reliability model

Limit state function:

Z(t)=R(t)-S(t) Z<0 \rightarrow failure

R: resistance (strength)

S: load

Reliability model

For timber:

 $Z(t) = \mathsf{R}(s(t),t)\text{-}S(t)$

Exponential damage function [Gerhards and Link]:

$$\frac{d\alpha}{dt} = \exp(-a + b\frac{\sigma(t)}{\sigma_s(t)})$$

Now:

$$\sigma_{s}(t) = f(t, \omega, T, \sigma_{decay})$$

$$\sigma(t) = f(t, \sigma_{mech}, \sigma_{w})$$

 σ_s = strength

 ω =moisture content (varying with t and R.H.)

 σ = stress function T=temperature (varying with t)

Strength loss due to decay

Decay: change in chemical and/or physical properties of wood caused primarily by the enzymatic activities of microorganisms (soft-rot fungi and wood-rotting basidiomycetes)

Mechanisms of strength loss in timber:

break down of the complex polymers of wood

 $\mathsf{f}_{\mathsf{c},0,\mathsf{dec}} < \mathsf{f}_{\mathsf{c},0}$

 Reduction of cross section in case of (superficial) deterioration of timber

$$\mathsf{F}_{\mathsf{u}}=\mathsf{f}_{\mathsf{c},0}^{*}\mathsf{A}_{\mathsf{tot}}\to\mathsf{F}_{\mathsf{u}}=\mathsf{f}_{\mathsf{c},0}^{*}\mathsf{A}_{\mathsf{rem}}+\mathsf{f}_{\mathsf{c},0,\mathsf{dec}}^{*}\mathsf{A}_{\mathsf{dec}}$$

Resistance decreases with decay!

Strength loss prediction

Strength loss prediction

Relationship strength – weight loss

Weight loss - Strength loss relationship

Literature study:

- Literature not extensive
- The greatest part of it concerns tests on wood treated with preservatives
- Decay tests standardized (EN 113, ENV 807 or ASTM D2017) evaluate the durability of treated wood mainly via **weight loss measurement**
- In some works mechanical properties are investigated with standards such as EN 408 (standard bending strength test)

- Small wooden samples tested (max 10x25x250 mm3)
- > Mainly weight loss measurements, few data on strength loss
- > No data on growth rate of fungi depending on volume
- Short term period analyzed

Strength loss prediction

Strength loss prediction

Relationship strength – chemical degradation

Winandy, Clausen, Curling (2000)

Strength loss – Chemical analysis

FT-NIR spectroscopy

- Promising technique to analyze physical state and chemical composition of wood
- Nondestructive technique, with future applications for online monitoring during manufacturing processes or in-situ inspection
- Fast acquisition of spectral data and almost no sample preparation required

Near InfraRed (NIR) analysis

Pails International Technology

NIR spectral data

- Absorption bands in NIR spectra arise from overtone and combinations of C-O, O-H, C-N and N-H bonds
- The problem of multiple overlapping bands can be handled with the multivariate analysis (MVA)

Aims of this study

 New protocol for laboratory decay test on 2 set of samples differing in *volume* sizes

 Relationship between the rate of decay (in terms of weight loss in time) and the volume of samples

STSM COST E55 at CATAS Spa Testing Laboratory (Italy)

- Compression tests on the bigger samples after different incubation time intervals (ongoing at TUDelft)
- Application of a new non-destructive technique to identify decay, the InfraRed (IR) Spectroscopy
- Use InfraRed (IR) Spectroscopy to study the advancement of decay in large samples

Delft University of Technology (The Netherlands)

Decay test

- 20 ministakes (10x10x100 mm³) and 20 stakes (45x45x200 mm³) of Picea abies and Larix kaempferi
- > Brown rot Coniophora Puteana (Schumacher ex Fries) Karsten
- Laboratory decay based on standard EN 113, with some modifications
- > Exposure time intervals for the ministakes: 2, 4, 8, 12, 16 weeks
- > Exposure time intervals for the stakes: 1, 3, 6 months (up to now!)

Inoculation with brown rot

Biodegradation

1 week

16 weeks

Weight losses vs. Time

NIR spectra at different incubation time

Multivariate analysis (PCA)

Multivariate analysis (PCA)

Multivariate analysis (PCA)

Conclusions and future work

- The new test set-up to study decay in different size specimens was successful using a special protocol for incubation
- It was proven that the rate of weight loss is strongly influenced by the volume of the samples, decreasing up to one third when increasing specimen's volume from 10⁴ mm³ to 40 times bigger for larch samples: therefore, weight loss itself is not a good indicator for decrease in structural reliability.
- The chemical approach via IR spectroscopy has good potentials for studying the effect of decay in wood
- Future compression tests have to be performed to correlate FT-IR spectra with strength

References

Tsuchikawa, S. (2007). "A review of recent near infrared research for wood and paper." Applied Spectroscopy Reviews **42**: 43-71.

Curling, S., C. A. Clausen, et al. (2002). "Experimental method to quantify progressive stages of decay of wood by basidiomycete fungi." International Biodeterioratian & Biodegradation **49**: 13-19.

Thank you for your attention

