forschungs gmbh

WG II

Size effect considerations for linear structural elements of timber

In the frame of COST E55 'Modelling of the performance of timber structures'

R Brandner

Eindhoven, 4th October 2007

Center of Competence for Timber Engineering and Wood Technology

at Center for Structural Engineering Graz University of Technology

forschungs gmbh

k_{size} – Content

Content:

- Linkage to MoU
- TOPIC I Some general thoughts independent of the material
 - Definition
 - Types of 'size effects'
 - 'Sub-size effects'
- TOPIC II 'statistical length effects'
 - Theoretical examinations independent of the material
 - Practical examinations on timber

'Size effects' – Linkage to MoU of COST E55:

Main objective of COST E55:

"... to provide the basic framework and knowledge required for the efficient and sustainable use of timber as a structural and building material ..."

- \rightarrow Every material property is general related to boundary conditions
- \rightarrow Especially every strength property is related to a reference size / volume
- \rightarrow Design of the ultimate load requires the conversion of strength values

Specific objectives of COST E55 (selected):

"... to improve the fundamental understanding of timber material and engineered timber products ..."

 \rightarrow Material properties of structures depend on size and loading situation

"... to assess robustness and system aspects for timber structures ..."

 \rightarrow 'Size effects' are in dependence of the system structure itself

forschungs gmbh

k_{size} – TOPIC I

TOPIC I:

Some general thoughts concerning 'size effects'

- Definition
- Types of 'size effects'
- 'Sub-size effects'

TOPIC II:

Examinations concerning 'statistical length effect'

- Theoretical examinations
- Practical examinations

forschungs gmbh

k_{size} – Types I/II

Types of 'size effects'

Main 'size effects' and describing theories (acc. Bažant), advanced I/II:

'Statistical size effects':

- As a result of the <u>randomness of material characteristics</u>
- Describable by the 'extreme statistics theory' → 'weakest link theory' acc. Weibull
- Constraints and basis of theory:
 - <u>Perfect brittle</u> material behaviour
 - <u>Serial system</u> (like a chain)
 - <u>Equal distributed</u> characteristic of single elements
 - <u>Equal stressed</u> single elements
 - Appr. of lower tail of life cycle distribution by <u>exp. distr.</u>

f_{RVE} ^{iid}→ f(X_i | θ) Failure at the ,weakest link'

 $\left(\frac{V_2}{V}\right)$

holz.ba	u forschungs gmbh	k _{size} – Types II/II
Types of 'size effects'		
<u>Main '</u> 'Ener	<u>size effects' and describing the</u>	ories (acc. Bažant), advanced II/II: cture mechanics size effects':
•	Due to <u>release of stored energ</u> elements within a system stru In case of non perfect brittle m Describable by 'fracture mech	<u>y and redistribution of load</u> within residual cture after partial failures naterial behaviour like 'quasi brittle materials' anics theory'

forschungs gmbh

k_{size} – Sub-effects I/IV

'Sub-size effects' acc. Bažant, advanced I/IV

'Boundary layer effects':

- Differences in build-up between boundary- and midsection layer
 - Due to natural material build up
 - E.g. timber: cut fibers, juvenile and adult timber sections, cut knots, knot position at the edges, etc.
 - Due to production of artificial materials
 - Flaws in mid section
 - Hardening of boundaries
 - Distribution of aggregates, etc.

forschungs gmbh

k_{size} – Sub-effects II/IV

'Sub-size effects' acc. Bažant, advanced II/IV

'Diffusion phenomena':

- Delayed transport of water, temperature, other chemicals and climate effects in cyclic loading
 - E.g. timber: orthotropic behaviour in diffusion of substances
 - Ratio of surface vers. volume → geometric effect

forschungs gmbh

'Sub-size effects' acc. Galileo, IV/IV

'Material inherent constraint':

Finite properties defined by the material inherent maximum capacity

"... a small dog could probably carry on his back two or three dogs of his own size; but I believe that a horse could even not carry even one of his own size."

(Galileo 1700's)

- With increase of volume own weight becomes more and more important even for light-weight structures
- High failure probability if structures are loaded near their maximum capacity

forschungs gmbh

k_{length} – TOPIC II

TOPIC I:

Some general thoughts concerning 'size effects'

- Definition
- Types of 'size effects'
- Sub-size effects'

TOPIC II:

Examinations concerning 'statistical length effect'

- Theoretical examinations
- Practical examinations

forschungs gmbh

Contact

DI (FH) Reinhard Brandner

research assistant +43 (0) 316 873-4605 reinhard.brandner@tugraz.at Inffeldgasse 24, A-8010 Graz

DI Dr. techn.

Thomas Bogensperger research assistant +43 (0) 316 873-4608 bogensperger@tugraz.at Inffeldgasse 24, A-8010 Graz

DI

Georg Jeitler

research assistant +43 (0) 316 873-4612 georg.jeitler@tugraz.at Inffeldgasse 24, A-8010 Graz

Univ.-Prof. DI Dr. techn.

Gerhard Schickhofer

scientific leader and head of department +43 (0) 316 873-4600 gerhard.schickhofer@tugraz.at Inffeldgasse 24, A-8010 Graz

Center of Competence for Timber Engineering and Wood Technology

at Center for Structural Engineering Graz University of Technology