

Research on Vibrational Performance of Timber Flooring Systems at Napier University in the UK

Researchers:

Jan Weckendorf

Binsheng Zhang

Abdy Kermani

David Reid

SCHOOL OF ENGINEERING AND THE BUILT ENVIRONMENT

Contents of presentation

- Background and objectives of the research
- Existing problems
- Current research
- Conclusions
- Future work

Background of the project

Lightweight flooring structures easily get excited and start to vibrate:

- Occupants may get annoyed by excessive floor vibrations;
- Current design rules do not satisfactorily control floor vibrations;
- Design rules are not fully harmonised within EU.

Objectives of the research work

Related to objectives of WG 1 of COST Action E55:

Analysis of the mechanisms leading to failure and malfunctioning

Focusing on vibrational performances of timber floor

- Determining the effect of floor configurations experimentally and theoretically using current (UK) timber floor construction styles
- Providing information for improvement of floor performance
- Developing guidelines on improving SLS timber floor design rules

Design rules related with timber floor vibrations

Serviceability Limit States (SLS) in Eurocode 5

Requiring fundamental frequency to be > 8 Hz

- Limiting unit point load deflection
- Limiting unit impulse velocity response
 - Including a fixed damping ratio

Design rules related with timber floor vibrations

Main problems

- Damping ratio
 - fixed for all timber flooring structures
 - damping characteristics vary from structure to structure and practically from mode to mode
 - recently increased by 100 % in UK NA to EC5
 - => may make velocity criterion redundant in common cases
- Design rules limited to certain construction types only
- Calculation of unit impulse velocity response and limit unsure

Parameters investigated for timber flooring systems

- Floor dimensions
- Floor decking materials
- Methods of fixing decking to joists
- Boundary conditions
- Dead weight
- Joist dimensions
- Joist arrangements
- Blocking

Test procedures

- Operational modal analysis (OMA)
 - natural frequencies and corresponding mode shapes
 - damping ratios
- Floor deflection
 - deflection under unit static point load

Deflection of the floor under unit point load

- Steel sections used for the point load
- Dial gauges used for measuring deflection

Main components of test equipment used for OMA

- Teac data recorder
- Pinocchio Vibraphones (transducers/sensors)
- Laptop (ARTeMIS software package)
- Brush

Dynamic tests

- Grid drawn on the floor surface
- Sensors attached at node points
- Brush used for exciting the floor

Signal processing and analysis

Dynamic responses of the structure displayed as spectral

densities in the frequency domain

The response of floor FT-1B-Pb in the frequency domain with the first five natural frequencies selected

Testing programme 1

Floor	Size [m]	Configurations
FT-1A-Pa	3.7×4.4	simply supported along two edges, P5 screwed to joists
FT-1A-Pb	3.7×4.4	simply supported along two edges, P5 glued + screwed to joists
FT-1A-O	3.7×4.4	simply supported along two edges, OSB screwed to joists
FT-1B-Pa	3.7×4.4	semi-rigidly supported along two edges, P5 screwed to joists
FT-1B-Pb	3.7×4.4	semi-rigidly supported along two edges, P5 glued + screwed to joists
FT-1B-O	3.7×4.4	semi-rigidly supported along two edges, OSB screwed to joists
FT-2A-Pa	5.0×4.4	simply supported along two edges, P5 screwed to joists
FT-2A-Pb	5.0×4.4	simply supported along two edges, P5 glued + screwed to joists
FT-2A-O	5.0×4.4	simply supported along two edges, OSB screwed to joists
FT-2B-Pa	5.0×4.4	semi-rigidly supported along two edges, P5 screwed to joists
FT-2B-Pb	5.0×4.4	semi-rigidly supported along two edges, P5 glued + screwed to joists
FT-2B-O	5.0×4.4	semi-rigidly supported along two edges, OSB screwed to joists

Testing programme 1

- Unit point load deflection
- Natural frequencies
- Mode shapes
- Damping ratios

Results detailed in:

Weckendorf, J., Zhang, B., Kermani, A. and Reid, D. (2007), *Vibrational behaviour of timber floors – experimental investigations,* The 3rd PRoBE Conference, Glasgow Caledonian University, Glasgow, UK.

Effects of increased floor length*: Reducing frequencies

* Flexural rigidity of the joists has been increased for long-span floor.

* Flexural rigidity of the joists has been increased for long-span floor.

Effects of using glue in addition to screws: Increasing frequencies

Effects of using glue in addition to screws: Decreasing deflection

Effects of providing end fixity: Increasing frequencies

Testing programme 2 (Part 1 - Variation in self weight)

Floor	Size [m]	Configurations
FJ-2B-20	3.5×2.4	semi-rigid supported along two edges, P5 screwed to joists, 19,90 kg/m ²
FJ-2B-50	3.5×2.4	semi-rigid supported along two edges, P5 screwed to joists, 50,00 kg/m ²
FJ-2B-75	3.5×2.4	semi-rigid supported along two edges, P5 screwed to joists, 75,00 kg/m ²

Testing programme 2 (Part 1 - Variation in self weight)

- Unit point load deflection
- Natural frequencies
- Mode shapes
- Damping ratios

Increasing dead weight:

- Reducing frequencies
- Reducing damping ratios

Conclusions

- Current design rules are not always satisfactory.
- Extensive experimental work has been carried out
 - to get a better understanding of the problem
 - to assess the effects of varied parameters to dynamic response
 - mass and span highly influence the vibrational performance
 - to gain further information for enhancing design criteria.
- The undertaken FEM simulation provides promising results.
- Enhanced formulations are needed.

Future work

- Comparing measured and calculated results
- Establishing relationships of floor set-ups with respect to
 - natural frequencies and mode shapes
 - damping ratios
- Updating the FE-model
- Undertaking Short Term Scientific Mission of COST E55 in cooperation with VTT Technical Research Centre of Finland
- Producing enhanced guidelines for design

Acknowledgements

Oregon Timber Frame Ltd. provided facilities and the materials including TJI-joists for testing programme one.

James Jones & Sons Ltd. provided materials for testing programme two.

Their support is gratefully acknowledged.

