Evaluation of Experience – the development of a generic procedure for the assessment of failures and malfunctions

Jochen Köhler Andreas Müller

Outline

- Background
- Past Experience
- Future Experience Evaluation
- Scheme and Database
- Swiss Project

Background

- Load bearing structures are designed and constructed to fulfil certain requirements
- Requirements related to reliability, serviceability and cost efficiency
- It is assumed that the performance can be predicted and controlled
- This requires that best practice is efficient
- And that best practice is **<u>not</u> violated**

Background

Quality Control

Past Experience

- Several studies assessed the performance of structures – it is focus on bad performance (failures and malfunctions)
- The analysis of failures and malfunctions delivers an important insight to the efficiency of current best practice and how often a violation of best practice is leading to failure.

Past Experience

- These evaluations are hard to compare different classification schemes are used
- The findings are rather consistent: The vast majority of failures had been caused by violations of best practice.
- This was found for **different types** of structures build with **different building materials**.

Past Experience

Future Experience Evaluation

- What can we learn (not from failures, but) from past evaluations? The following should be considered:
 - Appropriate and common procedures for analysing structural failures are necessary so that soundly based conclusions can be derived.
 - The **structural system** should be described in detail.
 - The influence of national legal systems should be identified and described.
 - Procedures should isolate organisatorial differences (e.g. of applied quality control policies) in projects involving structural failures.
 - Procedures should allow for the assessment of the effectiveness of quality control.
 - Development of feedback systems and trend warning mechanisms for the engineering profession.

Evaluation scheme for failures and malfunctions

Evaluation scheme for failures and malfunctions

Structural element

Failure

Description of the damaged building

••••

Damaged structural element

Properties of member

Description of Failure

Cause of failure

Human error

Human error in building process or in utilization

Outdated best practice

Swiss COST- Project "Prediction and Assessment of the Life-Cycle Performance of Timber Structures"

Partners: Swiss Federal Institute of Technology - ETH, Zürich

Material Sciences - EMPA, Dübendorf

Berne University of Applied Sciences - BFH, Biel

Swiss COST- Project "Prediction and Assessment of the Life-Cycle Performance of Timber Structures"

Phase 1: (June 07 – Jan. 08)	Evaluation of failure and malfunction in timber structures
Phase 2: (Jan. 08 – Juli 09)	Load bearing behaviour of structural components
Phase 3: (Sept. 08 – Dec. 09)	Behaviour of structural systems
Phase 4:	Evaluation of existing structures

Phase 4: (Jan. 08 – Dec. 09)

