Robustness of large-span timber structures – Two examples

Jørgen Munch-Andersen Philipp Dietsch (TUM)

Information Timber **Janish**

Presentation based on

- Munch-Andersen & Dietsch in special issue of Structural Engineering
- Failures reported in
- Hansson and Larsen: Recent failures in glulam structures and their causes. Eng. failure anaysis. 2005.
- Winter and Kreuzinger: The Bad Reichenhall ice-arena collapse and the necessary consequences on timber engineering. WCTE 2008.

Siemens Arena, Denmark (2001) Cycling arena with glulam trusses, span 73 m Simply supported purlins, span 12 m

Siemens Arena - failure 2 trusses failed (2600 m²), no significant wind or snow

The reasons

Too high design strength Reduced timber area at connection not accounted for

The reasons

Too high design strength Reduced timber area at connection not accounted for

=>

Load-bearing capacity only 25-30% of required Failed due to k_{mod}-effect ("static fatigue")

Siemens Arena - robustness

Strategy against progressive collapse:

- Trusses are key elements
- Purlins moderately fastened to trusses

Strategy worked! Only 2 of 12 trusses failed

Extend of collapse not disproportionate to the cause

Siemens Arena - robustness

Strategy against progressive collapse:

- Trusses are key elements
- Purlins moderately fastened to trusses

Strategy worked! Only 2 of 12 trusses failed Extend of collapse not disproportionate to the cause

Alternative strategy:

 Secure purlins so they can carry a failed truss
 Successful only if the cause of failure is local and affects only one truss (overloading, leaking roof)

Bad Reichenhall Arena, Germany (1972) Ice-arena with 2.9 m high box-girders, span 48 m Finger joints in girders per 16 m, K-shaped bracing

Bad Reichenhall Arena - failure Entire roof collapsed, snow below characteristic value

The reasons 1

Design:

- 1. Bending strength of glulam used in stead of tensile and compressive strength
- 2. No reduction for finger joints in girder
- 1+2: Load-bearing capacity ~ 75% of required

The reasons 1

Design:

- 1. Bending strength of glulam used in stead of tensile and compressive strength
- 2. No reduction for finger joints in girder
- 1+2: Load-bearing capacity ~ 75% of required
- 3. Kämpf web-boards (~Cross Laminated Timber) only approved for height 1.2 m and provided resorcinol glue is used
- 4. Urea-formaldehyde glue used, which was and are not allowed in humid conditions

Informati Timber **Janish**

The reasons 2

Construction and maintenance:

- 1. Bad quality of glue-line
- 2. Water penetration due to leaking roof
- 3. New knowledge: Condensation on lower side of girders due to radiation from the ice

Informati Timber Danish

The reasons 2

Construction and maintenance:

- 1. Bad quality of glue-line
- 2. Water penetration due to leaking roof
- 3. New knowledge: Condensation on lower side of girders due to radiation from the ice

=>

Collapse caused by degradation of glued connections over time combined with design errors

Bad Reichenhall Arena - robustness Robustness not considered during design Highly statically indeterminate and redundant structure - should be robust

Bad Reichenhall Arena - robustness

Robustness not considered during design

Highly statically indeterminate and redundant structure - should be robust

But:

- Some girders may have lost their strength long ago
- The K-bracing has redistributed the load to other girders
- The redistribution is not observed because the bracing is very stiff

Bad Reichenhall Arena - robustness

Robustness not considered during design

Highly statically indeterminate and redundant structure - should be robust

But:

- Some girders may have lost their strength long ago
- The K-bracing has redistributed the load to other girders
- The redistribution is not observed because the bracing is very stiff

=>

Redundant systems must be designed to show when they redistribute load

Discussion

Siemens

- Statically determinate
- Large systematic errors from beginning

Bad Reichenhall

- Statically indeterminate
- Some systematic errors +
 random degradation

Information **Danish Timber**

Discussion

Siemens

- Statically determinate
- Large systematic errors from beginning
- Nowhere to redistribute load to
- Redundancy would have
 caused progressive collapse

Bad Reichenhall

- Statically indeterminate
- Some systematic errors +
 random degradation
- Redistribution compensates
 for degradation
- Degradation in a single point might never had revealed

Information **Danish Timber** •

Discussion

Siemens

- Statically determinate
- Large systematic errors from beginning
- Nowhere to redistribute load to
- Redundancy would have
 caused progressive collapse
- A purely local error would involve nearly 2000 m² of roof – perhaps not proportional to the cause

Bad Reichenhall

- Statically indeterminate
- Some systematic errors +
 random degradation
- Redistribution compensates
 for degradation
- Degradation in a single point might never had revealed
- Reduced safety not shown so complete collapse for minor incident possible

• Redundancy not suitable to ensure robustness in case of systematic (repeated) errors – which are most frequent

- Redundancy not suitable to ensure robustness in case of systematic (repeated) errors which are most frequent
- Compartmentalisation can prevent progressive collapse

- Redundancy not suitable to ensure robustness in case of systematic (repeated) errors which are most frequent
- Compartmentalisation can prevent progressive collapse
- Redundancy within a compartment can minimize risk from random errors redistribution must show

- Redundancy not suitable to ensure robustness in case of systematic (repeated) errors – which are most frequent
- Compartmentalisation can prevent progressive collapse
- Redundancy within a compartment can minimize risk from random errors redistribution must show
- Eurocode focus on redundancy for ensuring robustness

 not applicable to large-span roofs

Recent failure in Danmark

- Sports hall with soccer lane
- 177 m long, 78 m wide, 16 m high
- Apsis halls with large curved glulam beams (32 m)
- Apsis hall towards SSV collapsed on Christmas eve 2010

Snow accumulation

Apsis hall

Danish Timber Information . 2

Apsis hall after collapse

Causes

- Only designed for shape factor 0,8 (as normal roofs)
- Curved beams designed as normal beams
- · Non-considered shell effect due to edge beam

Curved beam support at facade

Danish Timber Information

Curved edge beam serves as tension cord

Information Timber Danish

.

Timber Information Janish

Summary

- The edge beam is a secondary structure not designed as tension cord
- Tension in edge beam converts the roof to a shell
- Failure of the edge beams fasteningincreases suddenly the actions on the main beams =>
 - 1 cracks devellops
 - 2 the curved main beams are opened a bit and moves perpendicular to the curved facade which causes torsion
- So: secondary load-carrying capacity might be dangerous! (no warning, impact load on main structure when it fails)

Thank you - Questions?

Bad Reichenhall Arena, Germany (1972) Ice-arena with 2.9 m high box-girders, span 48 m Finger joints in girders per 16 m, K-shaped bracing

