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Introduction

 Trend worldwide toward probabilistic structural design

 Reliability-based design standards for timber (wood) 
evolved in the US and Canada in the 1980’s and 
1990’s

 20+ years later, where are we?

◦ What did we accomplish? How did we get there?

◦ What worked? What hasn’t?

◦ What has evolved? How? Why?

◦ Where are we going?
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Reliability-based design
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 All relevant limit states considered (flexure, 
shear, deflection, etc.) in design process

 All relevant load combinations checked to 
determine controlling combination(s)

 Load combination rules and partial safety 
factors taken from (e.g.) ASCE 7
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FOSM ► FORM/SORM/AFOSM ► MCS ► AMCS
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Result: LRFD for Wood 

 Murphy et al., 1988 (US)

 Foschi et al., 1989 (Canada)

 ASCE 7 (load factors, load combinations), AISC and ACI

 In-Grade Test Program (1987, 8 vols.)  

 Soft calibration to NDS (ASD), design strength values, 
target reliabilities

 Time-effects factors (cumulative damage models for 
species groups)

 Connections

 Repetitive member system factors
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 ASCE 16-95 Standard
released in 1996

 LRFD Manual (AF&PA)
released in 1997
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Changes in Probabilistic Modeling Approaches, 
Risk Analysis

 Fully coupled analysis
◦ Loads and resistances treated explicitly, simultaneously

◦ Reliability-based code calibration

◦ “R-S” analyses, FORM-SORM 

 Uncoupled risk analysis
◦ Dominant source of uncertainty (e.g., extreme load)

◦ Separates response from the hazard

◦ Fragility analysis

 Partially coupled analysis …
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Changes in Probabilistic Modeling Approaches, 
Risk Analysis

 Partially coupled analysis 
◦ Characteristic suite of (e.g., scaled ground motions) 

selected to characterize the hazard

◦ Probabilistic response description (e.g., CDF) 
developed, median-based mechanical and structural 
properties

◦ Response distributions and performance 
requirements (e.g., drift limits) then form the basis 
for design tables/charts
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Probabilistic risk analysis for design
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LRFD, member-based

Assessment (assembly or system level)

Assembly selection (design)



Single member limit state function (gravity loads)
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Single-member limit state analysis with 
cumulative damage (time-dependent simulation)

• Load duration (time effects) 
factors

• Interaction effects:

• Repetitive-member systems

• Moisture content

• Beam-columns

• Roof ponding

• Updated load process 
models, statistics

• Resistance statistics based 
on IGTP data, species 
groupings

• Comparison of cumulative 
damage models for similar 
species, validation
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g(x;t) = g[xload(t), xresistance(t), xsystem(t)] limit state function

Pf = Pr((t) > 1; 0<t<Tref) cumulative damage



Results

FOSM(x)

Partial factors ()

DOL factors ()

System factors (sys)

MC/exposure factor ()

…
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FOSM(x)
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A transition (spanning ~25 years)

IGTP Assembly tests CUREE NEESWood

Coupled analyses
Code calibration
RBD
Time effects
System factors

Shear walls
Diaphragms
Walls
Connections

Partially coupled analyses
3D structural modeling
Portfolio analyses
Hazard characterization
(suite of scaled records)

Shear wall selection
Design charts Uncoupled analyses

Fragilities
PBSD
DDD
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Partially coupled analyses
3D structural modeling
Portfolio analyses
Hazard characterization
(suite of scaled records)

Shear wall selection
Design charts

A transition (spanning ~25 years)

IGTP Assembly tests CUREE NEESWood

Coupled analyses
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Time effects
System factors

Shear walls
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Uncoupled analyses
Fragilities
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System Factor Definitions
 Geometric (section properties), e.g., ratio of PCM to 

bare stud section modulus

 Strength-based, e.g., ratio of system to individual 
member ultimate strength

 Reliability-based, e.g., bring system reliability down  
to member reliability (assumes comparable failure 
consequences)

 Others (e.g., ratio of ultimate-to-yield, etc.)

Repetitive member factors
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Portfolio approach
 In some cases, it may not be possible to express a 

generalized limit state function in terms of nominal 
values
◦ e.g., indeterminate systems in which complex 

material behavior, load-sharing behavior, and/or 
system limit state definitions are being considered

 An alternative to using a generalized limit state 
function with a bounded basic variable set is to 
consider a “portfolio approach”
◦ range of explicit systems 
◦ assumed to be representative of the design space
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Repetitive-member system reliabilities

Example: wood stud walls
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 Single factor (e.g., on flexural strength) may not 
be adequate for all system configurations, 
materials, and load types. 

 Evaluation of system factors for design of wall 
members
 Compatible with current format (e.g., Cr=1.15) 

in NDS and LRFD
 Proposed new format for repetitive-member 

factors:

yKsys = KPCA KNMEM KPY KLS

Partial system factors
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Ksys = KPCA KNMEM KPY KLS Kcalib.

Partial system factors

Ratios of 5th-percentiles? Mixed ratios?
(medians, 5th-percentiles) Some ratios deterministic?

System size 
(# members)

Ratio of series system 
to PC member strength

Member 
post-yield 
behavior
(redundancy)

Ratio of system strength 
defined by first-member
failure to series system

System 
load-sharing 
behavior

Ratio of system 
strength defined by 
system ultimate
to first-member

Partial 
composite action

Ratio of PC member to 
bare member strength

Calibration factor

Professional factor



Example: wall with openings on both sides

Product of partial factors
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Partially coupled analyses
3D structural modeling
Portfolio analyses
Hazard characterization
(suite of scaled records)

Shear wall selection
Design charts

Coupled analyses
Code calibration
RBD
Time effects
System factors

A transition (spanning ~25 years)

IGTP Assembly tests CUREE NEESWood

Shear walls
Diaphragms
Walls
Connections

Uncoupled analyses
Fragilities
PBSD
DDD
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(A new paradigm)
Performance-based engineering
 Design process is structured to meet specific performance 

expectations of the building occupants, owner and public 

 Gaining momentum in North America, Japan, and elsewhere

 First discussed in 1970’s (HUD “Operation Breakthrough”)

 Revisited in 1990’s, following Loma Prieta and Northridge, 
when it became apparent that buildings design by code for 
life safety often did not meet performance expectations in 
other aspects ($$$)
◦ SAC Steel (MRF) project
◦ CUREE-Caltech Wood Frame project

^



Background: Structural reliability, 
Single-member checking equations

 Structural reliability theory has been used as the basis for 
code development since the 1970’s

 LRFD for wood, performance requirement (safety):

R’ > iQi
 Single-member checking equations (members, components, 

connections) used in design of new structures

Shortcomings:
 Provide only an approximate picture of how a system of such 

members performs

 Unable to provide meaningful information on expected 
performance of a large number of (existing) structures



PBE concepts
 PB framework typically based on 3-4 generally stated 

performance goals, e.g.,

1. IMMEDIATE OCCUPANCY following moderate 
events (local or no damage)

2. LIFE SAFETY under design-basis events (moderate 
damage)

3. COLLAPSE PREVENTION under maximum 
considered events

 Challenge: state goals must be expressed in terms of 
structural responses that the engineer can evaluate 
with available analytical tools.



System reliability
Analytical models of system performance
◦ Complete systems (e.g., building frames)
◦ Sub-systems, assemblies (e.g., shearwalls)

PBE concepts (cont’d.)

Multiple failure modes Integrated failure modes

Time-history analysisNonlinear FE models

Fragility modeling
Uncoupled (vs. fully coupled) risk analysis

Uncouples the system analysis from the hazard



Design for natural hazards, fragility analysis

 Aleatory (variability) vs. epistemic uncertainty

 Unlike fully coupled approach (e.g., FORM) 
taken in developing limit states design, one 
source of variability often dominates (VS >> VR)

 An uncoupled fragility analysis provides a 
useful framework (e.g., for assessment) and 
suggests alternate approaches



Fragility modeling

Fragility of structural system often modeled by 
a Lognormal CDF: 
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CUREE-Caltech Woodframe Project

Performance 
requirements

Seismic hazard 
characterization

Cyclic loading 
protocol

Reliability analysis

PBD: shearwall 
selection

Uncertainty analysis
Sensitivity analysis
PBD (performance curves)

Shearwall 
test data

Fastener hysteretic 
properties

Analysis 
software
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PBD (performance curves)

Shearwall 
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Fastener hysteretic 
properties

Analysis 
software

Shearwall 
test data

Fastener hysteretic 
properties

Analysis 
software

PB assembly selection charts: specify 
the combination of design parameters 
needed to meet specific performance 

requirement(s)
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A modular 
approach

CASHEW
program

With specified structural 
configuration and input fastener 

hysteretic parameters

SASH1 
program

Nonlinear time-history analysis 
with global shearwall hysteretic 

parameters from CASHEW

Equivalent 
nonlinear SDOF 

oscillator

Single set of hysteretic 
parameters for a given wall

Scaled ordinary 
ground motion 
(OGM) records

Suite of OGM records 
scaled to a particular 
spectral acceleration

Scaling procedure

Response spectrum approach

SASHFIT 
program

Best-fit estimators for fastener 
hysteretic parameters from cyclic 

connection tests

Design 
charts for 
shearwall 
selection

One set for each 
non-exceedence 
probability level

Performance 
curves 

(peak drift vs. 
seismic weight)

One set for each combination of 
structural parameters (sheathing, 
fastener type, fastener spacing)

Peak 
displacement
distribution

Response distribution for 
given seismic weight

Fragility curves 
(failure probability 

vs. spectral 
acceleration)

One fragility curvefor each 
combination of structural 

parameters and performance 
requirement (limit state)

Connection 
test data

Cyclic load-deformation (hysteresis) 
curves for specimen with single 
sheathing-to-framing fastener

Modular NLTHA 
approach, CUREE 

(Rosowsky et al.)



Performance-based (seismic) design

 Peak displacement distributions
o Assembly-level 
o Full structure

 Performance curves, design charts

 Fragilities, Fr(x)

 Direct Displacement Design (DDD)

 Performance-based DDD
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Post-processing results

 Peak displacement CDF’s can be post-processed 
into a form more useful for design (dependent 
variable: seismic weight)

 Performance curves are intermediate step 
toward developing design charts

 Peak displacement CDF’s (non-parametric) can 
be post-processed into fragility curves,
Fr(x) = P[LS|D]
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Evolution of PBSD for Wood Structures

 Simplified design charts 

 Fragilities for assessment 

 Fragilities for design     ˣ

 PBSD (DDD) 

Rosowsky, COST Action E55, May 2011 37



Assembly-level peak displacement distributions 
(effect of missing fasteners)
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Assembly-level performance curves
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Assembly-level design chart
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Fragilities

Peak displacement CDF’s (non-parametric) 
can be post-processed into (parametric) 
fragility curves, Fr(x) = P[LS|D]

Performance-based
Assessment (PBA)

Performance-based
Design (PBD)

“Performance-based Engineering (PBE)”
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Fragility equation

aleatoric (inherent) and epistemic (knowledge-based) 
uncertainties are taken into account through the β terms
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Determination of demand uncertainty
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Ex., Fragility curves for one-story structure, isolated wall (3 modes)
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Ex., One-story structure, isolated wall: retrofit evaluation (1)
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Ex., One-story structure, isolated wall: retrofit evaluation (2)
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Assembly vs. complete structure
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Whole structure modeling and analysis 
(NLTHA, seismic response characterization, PBSD)

I. Numerical model
 SAWS (MATLAB)
 Shearwalls modeled as 

hysteretic spring elements

II. Seismic hazard (OGM suites)
 20 bi-axial records each
 Selected from the PEER 

database to match the design 
response spectra

III. Post-processing of results

Rosowsky, COST Action E55, May 2011 48



 Extend a procedure for Direct Displacement-Based 
Design (DDD) of midrise wood frame (timber) buildings, 
e.g., 3-6 stories

 Develop a set of (probability-based) factors for use in the 
DDD procedure to meet specified performance levels with 
certain target probabilities

 Create design charts (e.g., as a function of building 
height) to enable selection of appropriate CNE factor for 
given target drift and non-exceedance probability

4
9

Toward Probabilistic DDD
(Pang and Rosowsky, 2009; Rosowsky and Yue, 2010)
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Simplified DDD procedure

1. Calculate vertical distribution factors for the base shear

2. Calculate normalized story shear factors

3. Calculate effective height

4. Calculate target displacement

5. Calculate effective seismic weight

6. Determine damping reduction factor

7. Determine design base shear coefficient

8. Calculate design forces (base shear, lateral forces, story 
shears)

9. Select shear walls

Rosowsky, COST Action E55, May 2011 50



 Original simplified procedure was median-based 
(50% non-exceedance)

 CNE factors introduced as a way to design for 
non-exceedance probabilities other than 50% 
(increased flexibility in defining performance 
requirements)

Probabilistic DDD
Rosowsky, COST Action E55, May 2011 51



Design base shear coefficient (Cc) for DDD procedure:

where CNE = adjustment factor for different Pr(NE)

Base shear demand = product of the effective seismic weight and Cc

Shear wall capacity from database

Design: Total shear wall capacity > base shear demand

2

1
2

min

4

NE XS

NE X

eff

c
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C Sg
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



 
       

Vary factor from 1-2, 
re-design building, re-
analyze (NLTHA) for 
drift profile using suite 
of ground motions, 
evaluate peak inter-
story drift performance
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Performance-based design charts (CNE factor)
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Summary: first generation PB/DDD

 The simplified DDD procedure has been extended into a 
risk-based PBD procedure through the introduction of CNE
factors, enabling the engineer to specify (1) target drift and 
(2) non-exceedance probability at a given hazard level

 Portfolio of archetype structures captures variability in 
building configurations; suite of scaled ground motion 
records captures variability in seismic hazard 

 Proposed DDD procedure with CNE factors is able to provide 
more risk-consistent designs across the range of building 
heights considered; this is advantageous in a PBD 
framework

Rosowsky, COST Action E55, May 2011 55



In closing:
Evolution of probabilistic methods for timber structures

Rosowsky, COST Action E55, May 2011 56

 Reliability-based design concepts are now mature for timber 
structures, codes developed/maintained worldwide, partial 
factor format (member-based), region-specific design loads 
and material properties groupings

 Performance-based design concepts evolving worldwide, 
(first focus on seismic), multi-objective design, region-
specific hazard characterization

 Fast and efficient MCS techniques have enabled time-
dependent analyses, systems-level analyses, nonlinear 
time-history analyses, advanced modeling/simulation, 
complex structural-environmental interactions, etc. 



In closing:
What’s next?

Rosowsky, COST Action E55, May 2011 57

 Harmonization of LSD codes (across materials, countries)

 ASD 2.0 (where needed)

 Linkage between LSD and PBD (multi-tier, partial factors)

 Advances in whole structure modeling

 Multi-hazard design

 Performance-based design for durability (sustainability)



Thank you.
Rosowsky, COST Action E55, May 2011


