

A scheme for the evaluation of experience about the performance of timber structures

Gerhard Fink & Jochen Kohler ETH Zurich

Content

- Motivation to develop a new approach of a failure reporting template
- Design of a failure reporting template
 - Failure classification (according to cause of failure)
 - Identification of essential information
 - Failure reporting template
- Characteristic of documented experience

Motivation

Principles of a failure reporting template:

Failure reporting has to collect <u>all</u> information to:

- develop the accepted practice and to
- optimise the magnitude of quality control.

Motivation

Principles of a failure reporting template:

Essential information depends on the cause of failure!!!

Motivation – e.g. failed connection

Failure according to mistake in calculation

Failure despite accepted practice

Motivation – e.g. failed connection

Failure according to mistake in calculation

Failure despite accepted practice

Essential questions

- Why the engineer has made the mistake?
- Why the error was not detected?

Essential information

Detailed description of

- cause of failure
- magnitude of quality control

Motivation – e.g. failed connection

Failure according to mistake in calculation

Failure despite accepted practice

Essential questions

- Why the engineer has made the mistake?
- Why the error was not detected?
- Is there a mistake in our codes?
- Is there a lack of knowledge?

Essential information

Detailed description of

- cause of failure
- magnitude of quality control

Detailed description of

- failed connection
- structural system
- load (at time of damage)

Motivation

Development of a failure reporting template:

- Only essential information (depending on the cause of failure)
- Uniform
 - → optimal comparability of documented experience
- Easy to use (e.g. excel based software)
 - → facilitate the broad use of the template

Design of a failure reporting template

- 1. Failure classification (according to cause of failure)
- 2. Identification of essential information
 - → Improve best practice
 - optimise the magnitude of quality control
- 3. Development of a failure reporting template which **only** collects the essential information

Failures Type A

Failures Type B

Failures Type C

Failures
Failures
A according to
human errors

- Engineers ignorance
- Mistake

•

Failures Type B

Failures Type C

Failures Type C

Identification of essential information

Avoid errors

Reduction of the consequences

Error prevention

Error detection and correction

Error prevention

Human error (Error Type A)

- Technical process
- Working organisation
- Area of human behaviour

 Cause of failure (human error)

Error prevention

Human error (Error Type A)

- Technical process
- Working organisation
- Area of human behaviour

 Cause of failure (human error)

Error Type B

- Codes, standards
- Models

- Generation of codes and regulations
- Failed member/connection
- Load (at time of damage)
- Type of damage
- Magnitude of damage

Error detection and correction

 Quality control (during all phases of the building process)

Error detection and correction

Reduction of the consequences

Reduction of the consequences

Failure reporting template

Full template & adequate software is published on the homepage of the COST Action E55 – "Modelling of the performance of timber structures".

http://www.cost-e55.ethz.ch

Both, the proposal and the program can be downloaded. This should facilitate the broad use of this template.

• Only a small part of our buildings are analysed.

Only a small part of our buildings are analysed.

e.g.: Span of failed timber halls:

Only a small part of our buildings are analysed.

e.g.: Span of failed timber halls:

Only a small part of our buildings are analysed.

e.g.: Span of failed timber halls:

Only a small part of our buildings are analysed.

e.g.: Span of failed timber halls:

Only a small part of our buildings are analysed.

e.g.: Span of failed timber halls:

- Only a small part of our buildings are analysed.
- In the documented data there is a bias.
 (more ULS-damages are documented than SLS-damages)

- Only a small part of our buildings are analysed.
- In the documented data there is a bias.
 (more ULS-damages are documented than SLS-damages)
- Not every damage is according to an error.

Summary

Development of a failure reporting template

- Only essential information are collected (depending on the cause of failure)
- Detailed description of the cause of failure (for human errors)
- Easy to use (excel based software)
 - → facilitate the broad use of the template

Thank you for your attention!