COST E55 – Zürich

Quantifying Ductility in Timber Structures

Kjell A. Malo Jan Siem Pål Ellingsbø

Department of structural engineering The Norwegian University of Science and Technology

Trondheim, Norway

May 2011

Background and Motivation

2

EN 1990: Basis of design, Basic requirements 2.1

- (1): Sustain all actions
- (2): Adequate resistance, serviceability and durability
- (3): Fire resistance
- (4): A structure shall be designed and executed in such a way that it will not be damaged by events such as:
 - explosion,
 - impact, and
 - the consequences of human errors,

to an extent disproportinate to the original case.

Basis of design

- EN 1991-7: Accidental actions
 - Impact from traffic
 - Internal explosions

- EN 1995-1-1:
 - Only strength (and serviceability)

Basis of design

- EN 1998: Earthquakes
 - Static ductility (3 cycles, 0.8^*F_u):
 - Ductility class:
 - Low (D< 4)
 - Medium (4<D<6)
 - High (D>6)
 - Take into account:

- Initial slip in connections
- E₀ values (+ 10%)

$$D = \frac{\mathcal{E}_u}{\mathcal{E}_0}$$

Single family housing or few stories

• Wooden structure housing damage at the 1995 Kobe earthquake (photo by Michio Miyano)

May 2011

6

20 storied building?

(Ramstad arkitekter)

TRE: Skissene viser et alternativ til bærende konstruksjoner som vurderes i mulighetsstudien. Først 25 bærende søyler, deretter bjelkelag, 400 x500 mm før 180 mm massivtredekker legges inn. Så kommer diagonale kryssavstiver og til isist glassfasaden med utkragende bokser i massivtre. FOTO. REIJLF RAMSTAD ARKITEKTER

May 2011

INTN

7

Loading Conditions Testing Failure modes

Loading and Failure Modes:

- Static loading (Load is constant)
 - Snow on roof
 - (Slowly) Increased variable load
 - Decrease in resistance
- Dynamic loading (Load time dependent)
 - Impact e.g. from wild vehicles
 - Impact from falling mass above
 - Explosion
 - Earthquake
 - Sudden change in load distribution due to partly failure (e.g. due to human errors?)

Constitutive Modeling

14

Total strain models:

• In general: $\sigma = f(\varepsilon)$

- Power law:
- Prager:
- Voce:

$$\sigma = C_1 + C_2 \varepsilon^n$$

$$\sigma = \sigma_0 \tanh(E\varepsilon/\sigma_0)$$

$$\sigma = C_3 + C_4 \left(1 - \exp(-C_5 \varepsilon)\right)$$

- Jorissen -Fragiacomo:
- Menegotto Pinto:

$$\sigma = \sigma_0 \left(1 - \exp\left(-\frac{K_1}{\sigma_0}\varepsilon\right) \right) + K_1 \varepsilon \left(1 - \exp\left(-\frac{K_1}{\sigma_0}\varepsilon\right) \right) \le \sigma_{\max}$$

$$\frac{\sigma}{\sigma_0} = C_8 \left(\frac{\varepsilon}{\varepsilon_0}\right) + \left(1 - C_8\right) \frac{\frac{\varepsilon}{\varepsilon_0}}{\left[1 + \left(\frac{\varepsilon}{\varepsilon_0}\right)^n\right]^{\frac{1}{n}}}$$

Constitutive piecewise models:

• Elastic - elastoplastic domain (piecewise - constant shift)

$$\sigma = \begin{cases} E\varepsilon & \text{for } 0 \le \varepsilon < \frac{\sigma_0}{E} = \varepsilon_0 \\ \sigma_0 + f(\varepsilon - \varepsilon_0) & \text{for } \varepsilon \ge \varepsilon_0 \end{cases}$$

16

• Elastic or plastic domain (decoupled)

$$\sigma = \begin{cases} E \cdot \varepsilon & \varepsilon < \sigma_0 / E \\ f(\varepsilon_p) & \varepsilon \ge \sigma_0 / E \end{cases}$$

• Maximum (ultimate) strain:

$$\frac{d\sigma}{d\varepsilon_p} = \frac{f(\varepsilon_p)}{d\varepsilon_p} = 0 \quad \to \varepsilon_{pua}$$

$$\varepsilon_{pu} = \min \begin{cases} \varepsilon_{p\max} \\ \varepsilon_{pua} \end{cases}$$

Fracture (softening branch)

Total internal energy

$$W_t = W_e + W_p$$

May 2011

18

Example 1: Moment vs. rotation

• Initial stiffness and slip (by regression) :

May 2011

E = 70643 kNm/rad $\varepsilon_i (= \phi_i) = \frac{33.787}{70643} = 0.000478$ rad

• Linear elastic model: zero stress for zero strain

20

"Plastic" model

• Remove slip and elastic deformation

$$\varepsilon_p = \varepsilon - \varepsilon_i - \frac{\sigma}{E}$$

• Fit analytical expression (polynom?)

$$\sigma = f(\varepsilon_p)$$

$$\sigma = \sigma_0 + A\varepsilon_p + B\varepsilon_p^2 + C\varepsilon_p^3$$

• Results:

(

 $\sigma_{0} (= M_{0}) = 72.663 \text{ kNm} \qquad \varepsilon_{pu} = \min \begin{cases} \varepsilon_{p \max} = (0.00067) \\ \varepsilon_{pua} = 0.00036 \end{cases}$ $B = -9.19 \cdot 10^{7} \text{ kNm/rad}^{2}$ $C = 2.78 \cdot 10^{9} \text{ kNm/rad}^{3} \qquad \varepsilon_{pf} = \min \begin{cases} \varepsilon_{p \max} = 0.00067 \\ \varepsilon_{p \max} = 0.00067 \\ \varepsilon_{p fa} = (0.00078) \end{cases}$

May 2011

21

Department of Structural Engineering

Example 2: Single dowel test

23

Department of Structural Engineering

"Plastic" model

• Remove slip and elastic deformation

$$\varepsilon_p = \varepsilon - \varepsilon_i - \frac{\sigma}{E}$$

• Fit analytical expression (2 terms Voce)

$$\sigma = f(\varepsilon_p)$$

$$\sigma = \sigma_0 + Q_1 \left(1 - e^{-C_1 \varepsilon_p} \right) + Q_2 \left(1 - e^{-C_2 \varepsilon_p} \right)$$

Results

$$\sigma_{0} = 12.14 \text{ kN}$$

$$Q_{1} = 8.01 \text{ kN}$$

$$\varepsilon_{pu} = \min \begin{cases} \varepsilon_{p \max} = (4.87) \\ \varepsilon_{pua} = 0.49 \end{cases}$$

$$C_{1} = 8.55 \text{ mm}^{-1}$$

$$Q_{2} = -3.10 \text{ kN}$$

$$\varepsilon_{pf} = \min \begin{cases} \varepsilon_{p \max} = 0.00067 \\ \varepsilon_{pfa} = (N.A.) \end{cases}$$

25

May 2011

Ductility quantification

26

Ductility measures: $u_y = u_0 \rightarrow \varepsilon_0$

Strain based ductility measures "Ds"

$$Ds_{tu0} = rac{\mathcal{E}_u}{\mathcal{E}_0} = rac{\mathcal{E}_u}{\sigma_0/E}$$

$$Ds_{pu0} = \frac{\varepsilon_{pu}}{\varepsilon_0} = \frac{\varepsilon_{pu}}{\sigma_0/E}$$
$$Ds_{pf0} = \frac{\varepsilon_{pf}}{\sigma_0/E}$$

$$Ds_{tu} = \frac{\varepsilon_{pu}}{\varepsilon_{u}} = \frac{\varepsilon_{pu}}{\sigma_{u}/E + \varepsilon_{pu}}$$
$$Ds_{tf} = \frac{\varepsilon_{pf}}{\varepsilon_{f}} = \frac{\varepsilon_{pf}}{\sigma_{f}/E + \varepsilon_{pf}}$$

$$Ds_{ue} = \frac{\varepsilon_{pu}}{\varepsilon_{eu}} = \frac{\varepsilon_{pu}}{\sigma_u/E}$$

May 2011

 $\varepsilon_{u} = \frac{\sigma_{u}}{F} \left(1 + Ds_{ue} \right)$

•
$$\mathcal{E}_u = \mathcal{E}_0$$
 Brittle material has ductility = 1 !!
(EN 1998)

• The offset from linearity is far from unique Scaling by "yield point" should be avoided

 Scaling by max. strain give 0 < D < 1, but insufficient distinctions between responses

- Scaling by elastic strain at ultimate force: OK. Static ductility up to ultimate force level.
- Easy strain calculation.

Energy based ductility measures "Dw"

$$Dw_{ue} = \frac{W_{pu}}{W_{eu}} = \frac{\int_{0}^{\varepsilon_{pu}} \sigma d\varepsilon_{p}}{\int_{0}^{\sigma_{u}} \sigma d\varepsilon_{e}} = \frac{\int_{0}^{\varepsilon_{pu}} f(\varepsilon_{p}) d\varepsilon_{p}}{\frac{\sigma_{u}^{2}}{2E}}$$

• For static loading (up to ultimate load) Plastic energy dissipation/elastic energy

$$Dw_{fe} = \frac{W_{pf}}{W_{eu}} = \frac{\int_{0}^{\varepsilon_{pf}} \sigma d\varepsilon_{p}}{\int_{0}^{\sigma_{u}} \sigma d\varepsilon_{e}} = \frac{\int_{0}^{\varepsilon_{pf}} f(\varepsilon_{p}) d\varepsilon_{p}}{\frac{\sigma_{u}^{2}}{2E}}$$

May 2011

• Dynamic loading (up to fracture) Plastic dissipation/max elastic energy

 $W_{tu} = \frac{\sigma_u^2}{2E} \left(1 + D w_{ue} \right)$

$$W_{tf} = \frac{\sigma_u^2}{2E} \left(\left(\frac{\sigma_f}{\sigma_u} \right)^2 + Dw_{fe} \right)$$

• Total energies

2 examples:

Final Remarks (Quantifying):

• Decomposition of strains:

$$\varepsilon = \varepsilon_e + \varepsilon_p \qquad \varepsilon_e = \sigma/E$$

• Decoupled models:

$$\sigma = \begin{cases} E \cdot \varepsilon & \varepsilon < \sigma_0 / E \\ f(\varepsilon_p) & \varepsilon \ge \sigma_0 / E \end{cases}$$

- Quantifying measured test response by regression on to analytical models
 - Initial slip
 - Elastic linear response
 - "Plastic" nonlinear response
- Determine parameters of the analytical models
- Compute derived properties from the analytical models

Final Remarks: Ductility

May 2011