

Consideration of plasticity within the design of timber structures due to connection ductility

COST E55 – Modelling the Performance of Timber structures

May 26th – 27th, 2011

Content

- Motivation
- Influence of the material scattering
- Joint requirements
- Outlook

Motivation

Stress redistribution within statically undetermined structures

Plasticity in timber structures

• Timber is in general a brittle material

$$\left(\frac{\boldsymbol{\sigma}_{c,0,d}}{f_{c,o,d}}\right)^2 + \frac{\boldsymbol{\sigma}_{m,y,d}}{f_{m,y,d}} + k_{red} \cdot \frac{\boldsymbol{\sigma}_{m,z,d}}{f_{m,z,d}} \le 1$$

• Material properties of timber are characterized by extreme scattering of the properties and by anisotropy

Density

M

Φ.

M;

Influence of the modulus of elasticity on the required rotation

M

• Beam model with a scattering modulus of elasicity $dx + C_1$

Investigation based on the Karlsruher model

- Division of the beam into 150mm long cells
- Assuming scattering of the modulus of elasticity within each lamella and between each lamella
- Determination of the minimum required rotation

Influence of the modulus of elasticity on the required rotation

Motivation

Outlook

Influence of the modulus of elasticity on the required rotation

- Moon value of the coloulation is identical with the
 - Mean value of the calculation is identical with the calculation based on $E_{0,mean}$
- For a beam (GL24h) with a length of 10m the required rotation increases by approximate 8% due to the scattering of the modulus of elasticity

Frank Brühl

Influence of the modulus of elasticity on the required rotation

Frank Brühl

Ductile behavior of joints

Plasticity by implementing ductile joints

Pre-test

Gained knowledge due to pre-tests

- The compression zone has an influence on the stiffness.
- Occurrence of tension perpendicular to the grain, due to the joint rotation.

Rotation capacity

Test setup

Frank Brühl

Rotation capacity

Test setup

Frank Brühl

Rotation capacity

First veryfication of the component model

Joint Stiffness

Frank Brühl

Summary / Outlook

- Reinforced dowelled typ fasteners show a significant ductile behavior.
- Scattering of the modulus of elasticity has an influence of the required rotation (ϕ_{req}).
- Influence of the scattering of the density on the bearing resistance.
- Proof of a possible component model to develop the moment rotation behaviour of connections.
- Evaluation of the ductility is required.

Thank you for your attention

Acknowledgement

Deep Thank is given to Jochen Köhler

Sincerely thank is given to André Jorrisen and Ad Leijten for a a very valuable STSM at the TU Eindhoven

Further thank to

for their support and confidence.

